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Abstract

+30

Solutions with e~

azimuthal dependence are investigated, with the aid of the computer, for a circular
waveguide cavity containing thick, axially magnetized ferrite disks.

Such an investigation and investigations of

related configurations may have an application in the theory of the E-plane circulator.

In the analyses of waveguide circulators, more at-
tention has been given to the H-plane device than to
its E-plane counterpart. This is largely due to the
separation of modes which is possible in the H-plane
configuration, but impossible in the E-plane device.
The usual geometry of an E-plane circulator'’® is shown
in Fig. 1, and, in view of the complication of the
boundary value problem, some simplification is desirable.
The related configuration considered is illustrated in
Fig. 2, in which the complicated boundary conditions
r = r' in Fig. 1 are replaced by a perfectly conducting
wall, while the transverse ferrite-dielectric inter-
faces are retained. This is a circular waveguide cavity
end-loaded with thick, axially magnetized ferrite disks,
and a treatment of this problem, except with disks that
are very thin or very nearly isotropic, has to our knowl-
edge not appeared in the literature.

Detérmination of the fields in such a structure be-
gins with investigation of circular guide filled with
ferrite or dielectric. 1In each case we obtain an in-
finite number of possible modes which can be superim-
posed to give the actual fields in each region. For
guide filled with ferrite, determination and descrip- _
tion of these modes is Jifficult. Given the various
parameters of the problem, the characteristic equation
for the propagation constants must be solved numerically,
and classification of the resulting modes is subtle,
Only the case of etje azimuthal dependence is con-
sidered at this stage., After taking into account the
boundary conditions at the ends of the cavity, the
fields in each region are expanded in the appropriate
modes. Requiring continuity of the transverse field
components at the ferrite-dielectric interfaces and
making use of orthogonality of the dielectric modes
then lead to a set of homogeneous simultaneous equa-
tions in the various arbitrary constants involved. 1In
order to obtain a non-trivial solution, the determinant
of these equations must be set to zero. This condition
determines the cavity resonant frequencies. However,
the number of simultaneous equations is in general in-
finite and it is convenient to assume that only a small
number of modes is needed in each region to approximate
the actual fields satisfactorily. The problem is fur-
ther made more tractable by taking advantage of longi-
tudinal symmetry.

The expressions for the modes in ferrite-filled
guide with axial magnetization are complicated, and the
characteristic equation for 8 , which is involved in
each expression, must be solved numerically. This nu-
merical solution is carried out with the aid of a graph-
ical analysis that provides approximate information
about the ferrite modes and makes the exact treatment
feasible, For the e%30 cases, Suhl and Walker® (SW) have
carried out such a numerical-graphical analysis. Each
of their mode diagrams corresponds to a particular set
of normalized constants associated with fixed values of
saturation magnetization, gyromagnetic ratio, guide
radius, ferrite permittivity and frequency. Such a dia-
gram reveals the manner in which the propagation con-
stants of the modes are influenced by the magnetic bias

field. An extended version of the SW analysis of the
ferrite-filled guide has been fundamental in this work.
The extension is necessary not only because no SW plot
applies to our particular combination of parameters, but
also because the SW analysis only concerns the modes in
their propagating forms, no information being given by
the plots about a mode when it is evanescent. To con-
sider modes in the latter situation, the characteristic
equation must be examined for propagation constants

that are imaginary. This leads to an expansion of the
SW allowed regions and extensions of the solution curves.
Further, situations arise in which quantities involved
in the characteristic equation become complex, and in-

.vestigation of that equation is further complicated.

For each of several frequencies over the range of
interest, we must produce such an expanded mode plot,
It is felt that some of the evanescent modes may be of
substantial importance in the cavity problem. Inclusion
of only the propagating modes in the modal expansions
for each region may not permit good matching of fields
at the ferrite-dielectric interfaces. Physically, we
expect generation of evanescent modes at these inter-
faces, and we feel the theory must be capable of taking
the most important of these into account.

Two representative mode plots are shown in Figs. 3
and 4, for frequencies of 8 GHz and 11 GHz respectively,
and for the following constant parameters: azimuthal
dependence e’Y, saturation magnetization (4M) of 1800
Gauss; effective g-factor of 2.55; relative permittivity
of 9.5; and guide radius of .587 cm, The normalized
constants are defined as p = l.4+gez¢(4mM)/f and
fo =r'8y, where f is the frequency, r' is the actual
guide radius, and By is the free space propagation
constant, The variable ¢ is a normalized form of the
DC magnetic field and is given by Ll.4+geesHpo/f. The
variable ), is defined in SW, is a function of g, p and
the propagation constant B, and for brevity is not given
or discussed here, The characteristic equation for the
filled guide can be expressed in terms of two functions,
G, and Gz, which are equal when the equation is satis-
fied. For fixed r, and p , both G; and G can be writ-
ten as functions of ), and o. For various ¢ we are in-
terested in determining the values of ), that lead to
equality of G, and Gp. Once a solution ), is known for
a given 0, $ can be calculated.

As B varies from +» to zero and then from zero to
+jo, the value of ), varies over a range which depends
on g. Taking the dependence on ¢ of this range into
account an allowed region in the ),, o plane is deter-
mined. This region is made up of the portions of the
plane above and below both of the curves O, and A. It
should be mentioned that not all ¢,8 pairs map into the
allowed region, since below the intersection of O and
(I')T some imaginary values of B lead to complex values
ofAXI. At present, however, there has been no indica-
tion of the existence of solutions corresponding to such
values of B.

We now imagine the functions G, and Gy to be repre-
sented by two surfaces that extend above and below the
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allowed portions of the },,0 plane. Projections onto
the )\,,0 plane of intersections of these surfaces are
solution curves. In most cases, the following procedure
can be used to locate these curves approximately. In-
finity and zero curves for both G, and G; are plotted
in the allowed region., If it is known in which regions
G, and G, are of like sign, continuity considerations
can be used to verify the existence there of a solution
curve segment, Consider, for example, the region en-
closed by I,,0; and (I})p. We can show that G; and Gs
are both positive in this region. For any positive
value of G;, a constant G, curve extends between I, and
0, from the point }; =1, 0 =1 to (Ig);. As one moves
along this curve, G; moves through all positive values,
including the chosen value of G,. A solution point is
therefore known to exist., This can be done for all the
positive values of G,, and a solution curve results.
This solution curve must pass through the intersections
(0%)p, 0y and I,(I4).

In figures 3 and 4, much detail has been omitted
in the crowded regions and only a few solution curves
are shown, As an example of the conclusions that can
easily be drawn from such plots, we note some effects
of frequency on the modes. Only points above or below
both O, and (I})y correspond to real values of the propa-
gation constant. We then see in Fig. 3 that only one
mode propagates for values of g greater than 1.75 while
for 11 GHz there are two modes for all ¢ greater than
one. Note that for the circular guide filled with a
dielectric of the permittivity mentioned above, onlg
the TE], mode propagates at 8GHz, while both the TEj,
and Tuil modes propagate at 11 GHz. This is consistent
with our conclusion from each plot about the number of
modes propagating as o approaches infinity. It is in-
teresting to note theoretically, however, that as o ap-
proaches zero in Fig. 4, only one mode propagates. This
is not unreasonable, since the graphical treatment as-
sumes that the magnetization of the ferrite remains
constant as the bias magnetic field approaches zero.
That is, the material is assumed to remain saturated,

The various computer methods for solution of the
cavity characteristic equation and determination of the
cavity fields require quantitative knowledge of the fer-
rite modes at many frequencies, and this knowledge can-
not be obtained without the aid of the general informa-
tion provided by the mode graphs. Using general expres-
sions for the mode components in the ferrite and di-
electric regions, the procedure for obtaining the simul-
taneous equations and the matrix whose determinant must
be set to zero has been carried out.

Several possible extensions of this work are being
considered and more results will be available in the
next few months, The analysis can be modified to in-
clude the case of circular guide with a magnetically
short circuiting wall. This modification can then be
applied to disk-loaded cavities with curved magnetic
walls instead of curved electric walls, and this may
also prove useful in E-plane circulator theory. An
extension of the ferrite-filled circular guide theory
for both electrically and magnetically short circuiting
walls to modes with higher order (|n| > 1) azimuthal
dependence can be made, and applied to cavity problems
and again, possibly, to the E-plane circulator. Also,
cavities of both classes with ferrite disks in other
positions can be treated.

References
1. Wright, W.H. and McGowan, J.W.: "High-Power Y-

Junction E-Plane Circulator," IEEE Trans. Microwave
Theory Tech., MIT-15, pp. 557-558, August 1968.

2. Suhl, H. and Walker, L.R.: "Topics in Guided Wave
Propagation Through Gyromagnetic Media,'" Pt. 1, Bell

252

System Technical Journal, vol. 33, pp. 579-659, May 1954.

3. Longley, S.R.: "Experimental 4-Port E-Plane Junction
Circulators," IEEE Trans. Microwave Theory Tech. (Cor-
respondence), MIT~15, pp. 378-380, June 1967,

DIELECIRIC FERRITE

FIG. 1 The E-Plane Waveguide Circulator Structure
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FIG. 2 The Cavity Structure for the '"Reduced" Boundary
Value Problem
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FIG. 3 Mode Chart for the Ferrite-Filled Waveguide at 8 GHz (other
constants given in text)
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FIG. 4 Mode Chart for the Ferrite-Filled Waveguide at 11 GHz (other
constants as for Fig. 3)
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