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Abstract

+J 8
Solutions with e- azimuthal dependence are investigated, with the aid of the computer, for a circular

waveguide cavity containing thick, axially magnetized ferrite disks. Such an investigation and investigations of
related configurations may have an application in the theory of the E-plane circulator.

In the analyses of waveguide circulators, more at-
tention has been given to the H-plane device than to
its E-plane counterpart. This is largely due to the
separation of modes which ia possible in the H-plane
configuration, but impossible in the E-plane device.
The usual geometry of an E-plane circulatorl ’s is ehown
in Fig. 1, and, in view of the complication of the
boundary value problem, some simplification is desirable.
The related configuration considered is illustrated in
Fig. 2, in which the coqlicated boundary conditions
r = r’ in Fig. 1 are replaced by a perfectly conducting
wall, while the transverse ferrite-dielectric inter-
faces are retained. This is a circular waveguide cavity
end-loaded with thick, axially magnetized ferrite disks,
and a treatment of this problem, except with disks that
are very thin or very nearly isotropic, has to our knowl-
edge not appeared in the literature.

Determination of the fields in such a structure be-
gins with investigation of circular guide filled with
ferrite or dielectric. In each case we obtain an in-
finite number of possible modes which can be superim-

posed to give the actual fields in each region. For
guide filled with ferrite, determination and descrip-.

tion of these modes ie difficult. Given the various
parameters of the problem, the characteristic equation

for the propagation constants must be solved numerically,
and classification of the resulting modes is subtlef
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Only the case of e- azimuthal dependence is con-

sidered at this stage. After taking into account the
boundary conditions at the ends of the cavity, the

fields in each region are expanded in the appropriate

modes. Requiring continuity of the transverse field

components at the ferrite-dielectric interfaces and

making use of orthogonality of the dielectric modes
then lead to a set of homogeneous simultaneous equa-

tions in the various arbitrary constants involved. In

order to obtain a non-trivial solution, the determinant
of these equations must be set to zero. This condition
determines the cavity resonant frequencies. However,
the number of simultaneous equatione is in general in-

finite and it is convenient to assume that only a small
number of modes is needed in each region to approximate
the actual fields satisfactorily. The problem is fur-
ther made more tractable by taking advantage of longi-

tudinal symmetry.

The expressions for the modes in ferrite-filled

guide with axial magnetization are complicated, and the

characteristic equation for B , which is involved in
each expression, must be solved numerically. This nu-
merical solution is carried out with the aid of a graph-
ical analysis that provides approximate information

about the ferrite modes and makes the exact treatment
feasible. +39 ca5e5, Suhl and Walker2(SIJ) haveFor the e-
carried out such a numerical-graphical analysis. Each
of their mode diagrams corresponds to a particular set
of normalized constants associated with fixed values of
saturation magnetization, gyromagnetic ratio, guide

radius, ferrite permittivity and frequency. Such a dia-

gram reveals the manner in which the propagation con-
stants of the modes are influenced by the magnetic bias

field. An extended version of the Sw anal:Ysis of the
ferrite-filled guide has been fundamental in this work.
The extension is necessary not only because no SW plot
applies to our particular combination of parameters, but
also because the SW analysis only concerns the modes in

their propagating forms, no information being given by
the plots about a mode when it is evanescent. To con-
sider modes in the latter situation, the characteristic
equation must be examined for propagation constants

that are imaginary. This leads to an expansion of the
SW allowed regions and extensions of the solution curves.

Further, situations arise in which quantities involved
in the characteristic equation become complex, and in-

vestigation of that equation is further complicated.

For each of several frequencies over the range of

intereet, we must produce such an expanded mode plot .

It is felt that come of the evanescent modes may be of
substantial importance in the cavity problem. Inclusion
of only the propagating modes in the modal expansions
for each region may not permit good matching of fields
at the ferrite-dielectric interfaces. Physically, we

expect generation of evanescent modes at these inter-

faces, and we feel the theory must be capable of taking
the most important of these into account.

Two representative mode plots are shown in Figs. 3
and 4, for frequencies of 8 GHz and 11 GHz respectively,
and for the following constant parameters: azimuthal
dependence ej8, saturation magnetization (4nM) of 1800

Gauss; effective g-factor of 2.55; relative PermittivitY

of 9.5; and guide radius of .587 cm. The normalized
constants are defined as p = 1.4.gefr.(4nM)/f and

rO =r!~o, where f is the frequency, r’ is the actual

guide radius, and PO ie the free epace propagation
constant, ‘The variable u is a normalized form of the

DC magnetic field and is given by 1.4”gef~,HDC/f. The
variable L, is defined in SW, iS a functionof U, P and

the propagation constant ~, and for brevity is not given
or discussed here. The characteristic equation for the

filled guide can be expressed in terms of two functions,
GI and G2, which are equal when the equatiOn is ‘atie-

fied. For fixed r. and p , both GI and (;2 can be writ-

ten as functions of II and O. For variou~s o we are in-

terested in determining the values of hl that lead to
equality of GI and Ga. Once a solution 11 is known for

a given CT, @ can be calculated.

Ae P varies from w tO zerO and then from ZerO ‘0

+jo, the value of XI varies over a range which ‘epende
on o. Taking the dependence on a of this range into

account an allowed region in the 11, u plane is deter-

mined. This region is made up of the portions of the
plane above and below both of the curves Oe and A. It
should be mentioned that not all IS, S Pairs maP into the
allowed region, since below the intersection of 00 and
~I!) Sme imaEinarY values of p lead to complex values

oft;. At present, however, there has been no indica-
tion of the existence of solutions corresponding to such
values of ~.

We now imagine the functions GI and % to be repre-
sented by two surfaces that extend above and below the
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allowed portions of the Xl,u plane. Projections onto

the Ll,g plane of intersection of these surfaces are

solution curves. In most cases, the follcsring procedure

can be used to locate these curves approximately. In-
finity and zero curvee for both GI and G2 are plotted
in the allowed region. If it is known in which regions
GI and G2 are of like sign, continuity considerations
can be used to verify the existence there of a solution
curve segment. Consider, for example, the region en-
closed by 11,01 and (l’)T.

{.
We can show that GI and Gs

are both positive in t 1s region. For any positive
value of Gl, a constant GI curve extends between II and

01 from the point 11 = 1, 0 = 1 to (I~)T. As one moves
along this curve, Gz moves through all positive values,

including the chosen value of G1. A solution point is

therefore known to exist. This can be done for all the

positive values of Gl, and a solution curve results.
This solution curve must paes through the intersections

(o&)T, 01 and II,(I~)T. -

In figures 3 and 4, much detail has been omitted
in the crowded regions and only a few solution curves
are shu.?n. As an example of the conclusions that can
easily be drawn from such plots, we note some effects

of frequency on the modes. Only points above or below
both Oc and~~)T correspond to real values of the propa-

gation constant. We then see in Fig. 3 that only one

mode propagates for values of o greater than 1.75 while

for 11 GHz there are two modes for all u greater than
one. Note that for the circular guide filled with a
dielectric of the permittivity mentioned above, onl

Jthe TEO mode propagates at 8GHz, while both the TEII

and~~modes propagate atll GHz. This inconsistent
with our conclusion from each plot about the number of
modes propagating as u approaches infinity. It ia in-
teresting to note theoretically, however, that as o ap-
proaches zero in Fig. 4, only one mode propagates. This

is not unreasonable, since the graphical treatment as-

sumes that the magnetization of the ferrite remaine

constant as the biae magnetic field approaches zero.
That is, the material is aseumed to remain saturated.

The various computer methods for eolution of the
cavi~] characteristic equation and determination of the

cavity fields require quantitative knowledge of the fer-

rite modes at many frequencies, and this knowledge can-

not be obtained without the aid of the general informa-

tion provided by the mode grapha. Using general expres-
sions for the mode components in the ferrite and di-
electric regions, the procedure for obtaining ths simul-
taneous equations and the matrix whose determinant must
be set to zero has been carried out.

Several possible extensions of thie work are being

considered and more results will be available in the
next few months, The analysis can be modified to in-

clude the caee of circular guide with a magnetically
short circuiting wall. Thie modification can then be

applied to disk-loaded cavities with curved magnetic
walla instead of curved electric walls, and thie may
also prove ueeful in E-plane circulator theory. An

exteneion of the ferrite-filled circular guide theory
for both electrically and magnetically short circuiting
walls to modee with higher order ({nl > 1) azimuthal
dependence can be made, and applied to cavity problems

and again, possibly, to the E-plane circulator. Also,
cavitiee of both classes with ferrite disks in other

poeitions can be treated.
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FIG. 1 The E-Plane Waveguide Circulator Structure
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FIG. 2 The Cavity Structure for the “Reduced” Boundary
Value Problem
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FIG. 3

FIG. 4
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Mode Chart for the Ferrite-Filled Waveguide at 8 GHz (other

constants given in text)
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Mode Chart for the Ferrite-Filled Waveguide at 11 GHz (other

constants as for Fig. 3)
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